Logo

Microfabrication Technicians


About

Exploring this Job

A good way to learn more about the field is to interview microfabrication technicians about their careers. Ask your school's career services office for assistance with setting up informational interviews by phone, video chat, or in person. Prepare for the interview with a list of questions you have about this type of work and how the technicians got their start. Some examples:

  • What classes did you take in high school and college to prepare for this career?
  • What are some of the pros and cons of your job?
  • What are the most important personal and professional qualities for people in your career?
  • What’s the best way to break into the field?

Joining the Technology Student Association will provide you with an opportunity to explore career opportunities in science, technology, engineering, and mathematics, as well as to compete in academic competitions. Visit https://tsaweb.org for more information.

Participate in summer programs and classes at colleges and universities that allow you to learn more about microfabrication and science in general. For example, the University of California-Berkeley Marvell NanoLab at CITRIS offers internship programs for high school students, https://nanolab.berkeley.edu/public/links/HSUGPrograms.shtml. The program provides hands-on laboratory experience, and participants work closely with graduate students and staff mentors. Contact colleges in your area for information on available programs.

The Job

According to the MEMS and Nanotechnology Exchange, “microelectromechanical devices can vary from relatively simple structures having no moving elements, to extremely complex electromechanical systems with multiple moving elements under the control of integrated microelectronics. The one main criterion is that there are at least some elements having some sort of mechanical functionality whether or not these elements can move.” The main components of microelectromechanical systems include microsensors, microactuators, microelectronics, and microstructures. Technicians and engineers use microfabrication techniques such as microlithography, thin film deposition, doping, patterning, etching, bonding, and polishing to create MEMS.

Microfabrication technicians work closely with engineers to design and build a variety of microelectromechanical systems that improve the quality of our lives. For example, microfabrication professionals in the renewable-energy industry recently developed a solar cell that adds four semiconductors in two layers (as compared to the traditional single wide-spectrum semiconductors used in solar cells). Each of the four semiconductors absorbs energy from different parts of the light spectrum, and together they convert sunlight to energy at a more efficient rate than do traditional technologies. Although this new technology is currently not cost effective, engineers are working to reduce production costs and eventually bring this technology into widespread use.

In the medical field, microfabrication technicians have worked with engineers to develop biosensors, systems that convert a biological signal into an electrical one (in order to alert scientists and engineers to a medical issue in a patient). Examples of biosensors include microfabricated blood pressure biosensors and blood glucose biosensors.

In the automotive industry, microfabrication technicians helped engineers in designing pressure sensors for fuel-injection systems, micro-mirrors in video projection systems, and sensors for airbags.

Microfabrication technicians work in many industries—ranging from aerospace and telecommunications to healthcare, consumer goods, and automotives. As a result, their duties vary significantly. Here are some examples of typical duties of technicians regardless of their industry:

  • Operate precision equipment to control production processes
  • Process or characterize materials according to physical or chemical properties
  • Measure or mix chemicals or compounds by following detailed instructions or formulas
  • Write process specifications or documentation
  • Measure physical or chemical properties of materials or objects
  • Calibrate microfabrication equipment for testing, weighing, or production equipment
  • Prepare reports on experiments or applications
  • Test products for functionality or quality
  • Maintain accurate record or batch-record documentation of production
  • Maintain test equipment and clean work areas.